Influence of the sterol aliphatic side chain on membrane properties: a molecular dynamics study.

نویسندگان

  • João R Robalo
  • J P Prates Ramalho
  • Daniel Huster
  • Luís M S Loura
چکیده

Following a recent experimental investigation of the effect of the length of the alkyl side chain in a series of cholesterol analogues (Angew. Chem., Int. Ed., 2013, 52, 12848-12851), we report here an atomistic molecular dynamics characterization of the behaviour of methyl-branched side chain sterols (iso series) in POPC bilayers. The studied sterols included androstenol (i-C0-sterol) and cholesterol (i-C8-sterol), as well as four other derivatives (i-C5, i-C10, i-C12 and i-C14-sterol). For each sterol, both subtle local effects and more substantial differential alterations of membrane properties along the iso series were investigated. The location and orientation of the tetracyclic ring system is almost identical in all compounds. Among all the studied sterols, cholesterol is the sterol that presents the best matching with the hydrophobic length of POPC acyl chains, whereas longer-chained sterols interdigitate into the opposing membrane leaflet. In accordance with the experimental observations, a maximal ordering effect is observed for intermediate sterol chain length (i-C5, cholesterol, i-C10). Only for these sterols a preferential interaction with the saturated sn-1 chain of POPC (compared to the unsaturated sn-2 chain) was observed, but not for either shorter or longer-chained derivatives. This work highlights the importance of the sterol alkyl chain in the modulation of membrane properties and lateral organization in biological membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane properties of cholesterol analogs with an unbranched aliphatic side chain.

The interactions between cholesterol and other membrane molecules determine important membrane properties. It was shown that even small changes in the molecular structure of cholesterol have a crucial influence on these interactions. We recently reported that in addition to alterations in the tetracyclic ring structure, the iso-branched side chain of cholesterol also has a significant impact on...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis.

Mycobacteria are able to degrade natural sterols and use them as a source of carbon and energy. Several genes which play an important role in cholesterol ring degradation have been described in Mycobacterium smegmatis. However, there are limited data describing the molecular mechanism of the aliphatic side chain degradation by Mycobacterium spp. In this paper, we analyzed the role of the echA19...

متن کامل

Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.

Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergoste...

متن کامل

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 35  شماره 

صفحات  -

تاریخ انتشار 2015